Masako Harada

Portrait Masako HaradaContact
Office: 517-884-6940
Lab:  517-884-6988
View publications on MSU Scholars
IQ DIVISION – Chemical Biology



Masako Harada is an assistant professor in the Department of Biomedical Engineering who was recruited from Stanford to join IQ. The ultimate goal of her research is to translate basic scientific findings into clinical applications.

Dr. Harada received her undergraduate degree in molecular genetics from King’s College London. She earned her Ph.D. in experimental oncology from Karolinska Institute in Sweden and conducted her postdoctoral training in cancer chemotherapy at Stanford University.

The Harada lab

Vesicle release from cells or tissues into the extracellular environment is an evolutionally conserved process, which became increasingly appreciated as an essential mechanism of intercellular communication over recent years. Extracellular vesicles (EVs) such as exosomes and microvesicles contain a wide range of biomolecules including proteins, RNAs, and DNAs, which transfer these functional cargos to distant cells or tissues through circulation. Owing to their increased stability in circulation, biocompatibility, low immunogenicity and toxicity, EVs are attractive diagnostic markers and delivery systems for therapeutics.

The Harada Lab uses genetic/cellular engineering tools to investigate EV biology, and to engineer EVs as a drug delivery cargo for oligonucleotide therapeutics and small molecular drugs.

Current research projects:
Targeted Epigenetic Therapy using Engineered EV-CRISPR/dCas9 system

One of the major challenges in gene therapy is targeted delivery. Using beta-cell targeting single-chain antibody labeled EVs as a delivery cargo of CRISPR/dCas9 epigenetic modulators, we aim to develop tools to alter epigenetic marks of a specific genomic locus for inducing heritable genetic changes in pancreatic beta cells to treat type 1 diabetes.

EV mediated microRNA delivery for cancer therapy

MicroRNAs (miRNAs) are small endogenous non-coding RNA molecules that regulate gene expression in diverse biological processes. Some of the miRNAs can be a potent therapeutic target for the specific type of cancers. Our lab is developing EV-miRNA mimic/inhibitor delivery system for epithelial tumors to study the efficacy of the miRNA treatment.

Development of “therapeutic guide proteins” using an in vivo EV-display screen

Biocompatibility feature of EVs makes an ideal carrier for in vivo targeting. We are developing an in vivo exosome-display screening strategy to select a “guide protein” expressed on the surface of naturally occurring cell-derived vesicles using the combination of scFv library screening and EV engineering.